

Welcome to MQTT/UDP

Package version 0.4

You can get this document in PDF format [https://media.readthedocs.org/pdf/mqtt-udp/latest/mqtt-udp.pdf].

Introduction

MQTT/UDP is a simplest possible protocol for IoT, smart home applications and
robotics. As you can guess from its name, it is based on MQTT (which is quite
simple too), but based on UDP and needs no broker.

Network is a broker

Your network does most of the broker’s work.

Fast track for impatient readers: MQTT/UDP native implementations exist in Java, Python, C, Lua and PLC specific ST language. See corresponding references:

	C Language API Reference

	Java Language API Reference

	Python Language API Reference

	Lua Language API Reference

	CodeSys ST Language API Reference

Now some words on MQTT/UDP idea. It is quite simple. Broker is a single point of failure [https://en.wikipedia.org/wiki/Single_point_of_failure] and can be avoided. Actual
traffic of smart home installation is not too big and comes over a separated (by firewall) network. There are many listeners that need same data, such as:

	main UI subsystem (such as OpenHAB installation)

	special function controllers (light, climate units)

	per-room or per-function controllers (kitchen ventilation, bath room sensors, room CO2 sensors, etc)

	in-room displays (room and outdoor temperature)

All these points generate some information (local sensors, state) and need some other information. By the way, CAN bus/protocol is made for quite the same requirements,
but is not good for TCP/IP and Ethernet. Actually, to some extent, MQTT/UDP is CAN for Ethernet.

Possible topologies

Here is a list of more or less obvious use cases for MQTT/UDP

Fault-tolerant sensors

Some 2-4 temperature sensors are placed in one room and send
updates every 10 seconds or so. Update topic is the same for all the
sensors, so that every reader gets mix of all the readings.

Reader should calculate average for last 4-8 readings.

Result: reader gets average temperature in room and failure of
one or two sensors is not a problem at all.

Trying to build corresponding configuration with traditional MQTT or,
for example, Modbus you will have to:

	Setup broker

	Setup transport (topic names) for all separate sensors

	Setup some smart code which detects loss of updates from sensors

	Still calculate average

	Feed calculated average back if you want to share data with other system nodes

[image: _images/AveragedSensors.svg]Typical MQTT/UDP use case.

This diagram shows three sensors duplicating each other. For example,
three outer temperature sensors. Wall display, history database and
main smarthome unit get copy of all data from sensors. Malfunction of
any unit does not make any problemn for others.

One sensor, many listeners

IoT network is a lot of parties, operating together. It is usual that
many of them need one data source to make a decision. Just as an example,
my house control system consists of about 10 processing units of different
size. Many of them need to know if it is dark outside, to understand how
to control local lighting. Currently I have to distribute light sensor data
via two possible points of failure - controller it is connected to and
OpenHub software as a broker. I’m going to swithch to MQTT/UDP and feed
all the units directly.

Multiple smart switches

Some wall switches are controlling the same device. All of them send
and read one topic which translates on/off state for the device.

Of course, if one switch changes the state, all others read the state broadcast
and note it, so that next time each switch knows, which state it should
switch to.

It is possible, of course, that UDP packet from some switch will be lost.
So when you switch it, nothing happens. What do you do in such a situation?
Turn switch again, of course, until it works!

In this example I wanted to illustrate that even in this situation UDP
transport is not really that bad.

All the data is visible

That is a topology issue too. Broadcast/multicast nature of MQTT/UDP
lets you see what is going on on the “bus” exactly the same way as
all the parties see. There is a simple tool exist for that in this
repository, but you can use, for example well known WireShark as well.

Reliability

Note

There’s QoS support for MQTT/UDP is in development, which makes it as reliable as TCP version.

As MQTT/UDP is based on UDP protocol, which does not guarantee packet delivery, one can suppose that MQTT/UDP is not reliable. Is it?

Not at all.

If we use it for repeated updates, such as sensor data transfer, UDP is actually more reliable, than TCP! Really. If our network drops each
second packet, TCP connection will be effectively dead, attempting to resend again and again outdated packets which are not needed anymore.
And MQTT/UDP will just loose half of readings, which is not really a problem for 99% of installations. So, TCP helps just if packet loss rate
is quite low.

Actualy, I made simple test 1 to ckeck UDP reliability. One host in my house’s local net was generating MQTT/UDP traffic as fast as
possible and other checked packets to be sequent, counting speed and error rate. Two IPTV units was started to show HD content and one
of the computers was copying some few GBytes to file server. Result was quite surprising: MQTT/UDP error rate grew to… 0.4% with about 50K
packets/second, but TV sets stopped showing, being, obviusly, starved.

Anyway, I’m going to add completely reliable mode to MQTT/UDP in near future.

Footnotes

	1

	Corresponding tools are in repository and you can run such test yourself.

Packets and general logic

Packet types and use

It is extremely simple to use MQTT/UDP. Basic use case is: one party sends PUBLISH packets,
other receives, selecting for itself ones with topics it needs. That is all. No connect,
no subscribe, no broker address to configure - we’re broadcasting.

For most applications it is all that you need. But there are 3 other packet types that possibly can
be used.

SUBSCRIBE - MQTT/UDP uses this as a request to resend some topic value. It is not automated in any way by library code (but will be),
so you have to respond to such a packet manually, if you want. It is intended for remote configuration use to let configuration
program to request settings values from nodes. This is to be implemented later.

PINGREQ - Ping request, ask all nodes to reply. This is for remote configuration also, it helps config program to detect all nodes on the network.
Library code automatically replies to PINGREQ with PINGRESP.

PINGRESP - reply to ping. You don’t need to send it manually. It is done automatically.

I’m going to use PUBACK packet later to support reliable delivery.

Topic names

One important thing about topics is $SYS topic. MQTT/UDP is a broadcast environment, so each node which wants to use $SYS
,ust distinguish itself by adding IP address or host name as first subtopic under $SYS: $SYS/192.168.1.33. Topic name
$SYS/hostname/config is to be used for configurable from network parameters.

One more special thing I’m going to use is $META topic name suffix. It will possibly be used to request/send topic metadata.
For example, if we have kitchen/temperature topic, then kitchen/temperature/$META/name can be used to pass printable
topic name, and kitchen/temperature/$META/unit - to send measuring unit name.

API Reference

C Language API Reference

There is a native MQTT/UDP implementation in C. You can browse sources at https://github.com/dzavalishin/mqtt_udp/tree/master/lang/c repository.

Lets begin with a simplest examples.

Send data:

int rc = mqtt_udp_send_publish(topic, value);

Listen for data:

int main(int argc, char *argv[])
{
 ...

 int rc = mqtt_udp_recv_loop(mqtt_udp_dump_any_pkt);

 ...
}

int mqtt_udp_dump_any_pkt(struct mqtt_udp_pkt *o)
{

 printf("pkt %x flags %x, id %d",
 o->ptype, o->pflags, o->pkt_id
);

 if(o->topic_len > 0)
 printf(" topic '%s'", o->topic);

 if(o->value_len > 0)
 printf(" = '%s'", o->value);

 printf("\n");
}

Now lets get through the packet structure definition:

struct mqtt_udp_pkt
{
 int from_ip;

 int ptype; // upper 4 bits, not shifted
 int pflags; // lower 4 bits

 size_t total; // length of the rest of pkt down from here

 int pkt_id;

 size_t topic_len;
 char * topic;

 size_t value_len;
 char * value;
};

Listen for packets

See Example C code [https://github.com/dzavalishin/mqtt_udp/blob/master/lang/c/mqtt_udp_listen.c].

For listening for data from the network you need just some of fields. First, you have to check
that packet is transferring item data:

struct mqtt_udp_pkt p;

if(p->ptype == PTYPE_PUBLISH)
{
// Got data message
}

For the first implementation just ignore all other packets. Frankly, there’s not much for you to ignore.

Now get topic and data from packet you got:

strlcpy(my_value_buf, p->value, sizeof(my_data_buf));
strlcpy(my_topic_buf, p->topic, sizeof(my_topic_buf));

And you’re done, now ypou have topic and value received.

Includes

There’s just one:

#include "mqtt_udp.h"

Functions

Send PUBLISH packet:

int mqtt_udp_send_publish(char *topic, char *data);

Send SUBSCRIBE packet:

int mqtt_udp_send_subscribe(char *topic);

Send PINGREQ packet, ask others to respond:

int mqtt_udp_send_ping_request(void);

Send PINGRESP packet, tell that you’re alive:

int mqtt_udp_send_ping_responce(void);

Start loop for packet reception, providing callback to be called
when packet arrives:

typedef int (*process_pkt)(struct mqtt_udp_pkt *pkt);

int mqtt_udp_recv_loop(process_pkt callback);

Dump packet structure. Handy to debug things:

int mqtt_udp_dump_any_pkt(struct mqtt_udp_pkt *o);

UDP IO interface

Default implementation uses POSIX API to communicate with network, but for
embedded use you can redefine corresponding functions.

Receive UDP packet. Must return sender’s address in src_ip_addr:

int mqtt_udp_recv_pkt(int fd, char *buf, size_t buflen, int *src_ip_addr);

Broadcast UDP packet:

int mqtt_udp_send_pkt(int fd, char *data, size_t len);

Send UDP packet (actually not used now, but can be later):

int mqtt_udp_send_pkt_addr(int fd, char *data, size_t len, int ip_addr);

Create UDP socket which can be used to send or broadcast:

int mqtt_udp_socket(void);

Prepare socket for reception on MQTT_PORT:

int mqtt_udp_bind(int fd)

Close UDP socket:

int mqtt_udp_close_fd(int fd)

Service

Match topic name against a pattern, processing + and # wildcards, returns 1 on match:

mqtt_udp_match(wildcard, topic name)

Java Language API Reference

There is a native MQTT/UDP implementation in Java. You can browse sources at https://github.com/dzavalishin/mqtt_udp/tree/master/lang/java repository.

Again, here are simplest examples.

Send data:

PublishPacket pkt = new PublishPacket(topic, value);
pkt.send();

Listen for data:

PacketSourceServer ss = new PacketSourceServer();
ss.setSink(pkt -> {
 System.out.println("Got packet: "+pkt);

 if (p instanceof PublishPacket) {
 PublishPacket pp = (PublishPacket) p;
 }

});

Listen for packets

See Example Java code [https://github.com/dzavalishin/mqtt_udp/blob/master/lang/java/src/ru/dz/mqtt_udp/util/Sub.java].

Here it is:

package ru.dz.mqtt_udp.util;

import java.io.IOException;
import java.net.SocketException;

import ru.dz.mqtt_udp.IPacket;
import ru.dz.mqtt_udp.MqttProtocolException;
import ru.dz.mqtt_udp.SubServer;

public class Sub extends SubServer
{

 public static void main(String[] args) throws SocketException, IOException, MqttProtocolException
 {
 Sub srv = new Sub();
 srv.start();
 }

 @Override
 protected void processPacket(IPacket p) {
 System.out.println(p);

 if (p instanceof PublishPacket) {
 PublishPacket pp = (PublishPacket) p;

 // now use pp.getTopic() and pp.getValueString() or pp.getValueRaw()
 }
 }
}

Now what we are doung here. Our class Sub is based on SubServer, which is doing all the reception job, and calls processPacket
when it got some data for you. There are many possible types of packets, but for now we need just one, which is
PublishPacket. Hence we check for type, and convert:

if (p instanceof PublishPacket) {
 PublishPacket pp = (PublishPacket) p;

Now we can do what we wish with data we got using pp.getTopic() and pp.getValueString().

Listen code we’ve seen in a first example is slightly different:

PacketSourceServer ss = new PacketSourceServer();
ss.setSink(pkt -> {
 System.out.println("Got packet: "+pkt);

 if (p instanceof PublishPacket) {
 PublishPacket pp = (PublishPacket) p;
 }

});

Used here PacketSourceServer, first of all, starts automatically, and uses Sink you pass to setSink
to pass packets received to you. The rest of the story is the same.

Packet classes

There are PublishPacket, SubscribePacket, PingReqPacket and PingRespPacket. Usage is extremely simple:

new PingReqPacket().send();

Service

Match topic name against a pattern, processing + and # wildcards, returns true on match:

TopicFilter tf = new TopicFilter("aaa/+/bbb");
boolean matches = tf.test("aaa/ccc/bbb"));

TopicFlter is a Predicate (functional interface implementation).

Python Language API Reference

As you already guessed, python implementation is native too. You can browse
sources at https://github.com/dzavalishin/mqtt_udp/tree/master/lang/python3
repository.
There is also lang/python directory, which is for older 2.x python environment,
but it is outdated. Sorry, can’t afford to support it. If you need python 2.x,
you can backport some python3 code, it should be quite easy.

Let’s begin with examples, as usual.

Send data:

mqttudp.engine.send_publish("test_topic", "Hello, world!")

Listen for data:

def recv_packet(ptype,topic,value,pflags,addr):
 if ptype != "publish":
 print(ptype + ", " + topic + "\t\t" + str(addr))
 return
 print(topic+"="+value+ "\t\t" + str(addr))

mqttudp.engine.listen(recv_packet)

Module mqttudp.engine

Main package, implements MQTT/UDP protocol.

	send_ping() - send PINGREQ packet.

	send_ping_responce() - send PINGRESP packet. It is sent automatically, you don’t have to.

	listen(callback) - listen for incoming packets.

	send_publish(topic, payload) - this what is mostly used.

	send_subscribe(topic) - ask other party to send corresponding item again. This is optional.

	set_muted(mode: bool) - turn off protocol replies. Use for send-only daemons which do not need to be discovered.

Match topic name against a pattern, processing + and # wildcards, returns True on match:

import mqttudp.engine as me
me.match("aaa/+/bbb", "aaa/ccc/bbb")

Module mqttudp.config

Additional module, sets up configuration file reader. Most command line utilities use it to get settings.
It reads mqtt-udp.ini file in current directory. Here is an example:

[DEFAULT]
host = smart.

[mqtt-gate] # Settings for MQTT to MQTT/UDP gate
login =
password =

subscribe=#
#host = smart. # See [DEFAULT] above

#blacklist=/topic # Regexp to check if topic is forbidden to relay
#blacklist=/openhab

[openhab-gate]
#port=8080 # There's builtin default
#host = smart. # Settings for MQTT/UDP to OpehHAB gate

#blacklist=/topic # Regexp to check if topic is forbidden to relay

which sitemap to use for reading data from openhab
#sitemap=default

Usage:

import mqttudp.config as cfg

cfg.setGroup('mqtt-gate') # set ours .ini file [section]

blackList=cfg.get('blacklist') # read setting

Module mqttudp.interlock

Additional module, implements two classes: Bidirectional and Timer.

Bidirectional is used by bidiractional gateways to prevent loop traffic:

Init interlock object which will
forbid reverse direction traffic
for 5 seconds after message passed
in one direction.

ilock = mqttudp.interlock.Bidirectional(5)

Check if we can pass forward

if ilock.broker_to_udp(msg.topic, msg.payload):
 mqttudp.engine.send_publish(msg.topic, msg.payload)
 print("To UDP: "+msg.topic+"="+str(msg.payload))
else:
 print("BLOCKED to UDP: "+msg.topic+"="+str(msg.payload))

and back

if ilock.udp_to_broker(topic, value):
 bclient.publish(topic, value, qos=0)
 print("From UDP: "+topic+"="+value)
else:
 print("BLOCKED from UDP: "+topic+"="+value)

Value is not actually used in current implementation. It is passed
for later and smarter versions.

Timer prevents updates from coming too frequently:

it = mqttudp.interlock.Timer(10)

if it.can_pass(topic, value):
 print("From broker "+topic+" "+value)
 mqttudp.engine.send_publish(topic, value)
else:
 print("From broker REPEAT BLOCKED "+topic+" "+value)

It checks if value is changed. Such values are permitted to pass through.
Unchanged ones will pass only if time (10 seconds in this example) is passed
since previous item come through.

Module mqttudp.mqtt_udp_defs

This module is not for user code, it is used internally. But you can get library release version from it:

PACKAGE_VERSION_MAJOR = 0
PACKAGE_VERSION_MINOR = 4

Lua Language API Reference

Note

Lua API is not final.

You can browse sources at https://github.com/dzavalishin/mqtt_udp/tree/master/lang/lua repository.

Basic examples in Lua.

Send data:

local mq = require "mqtt_udp_lib"
mq.send_publish(topic, val);

Listen for data:

local mq = require "mqtt_udp_lib"

local listener = function(ptype, topic, value, ip, port)
 print("'"..topic.."' = '"..val.."'".." from: ", ip, port)
end

mq.listen(listener)

CodeSys ST Language API Reference

Note

This implementation ise currently send only.

Sorry, due to PLC limitations, there is no clear API in this code example, just integrated protocol
and client code example.

PLC is specific: it runs all its programs in loop and it is assumed that each program is running
without blocking and does not spend too much time each loop cycle. There’s usually a watch dog
that checks for it. Hence, ST implementation is cycling, sending just one topic per loop cycle.

Actual API is simple:

FUNCTION MQTT_SEND : BOOL

VAR_INPUT
 socket : DINT;

 topic : STRING;
 data : STRING;

 sock_adr_out : SOCKADDRESS;
END_VAR

FUNCTION MQ_SEND_REAL : BOOL
VAR_INPUT
 socket : DINT;
 m_SAddress : SOCKADDRESS;

 topic : STRING;
 data : REAL;
END_VAR

Here is how it is used in main program:

PROGRAM MQTT_PRG
VAR
 STEP : INT := 0;
 socket : DINT := SOCKET_INVALID;
 wOutPort : INT := 1883;
 m_SAddress : SOCKADDRESS;

END_VAR

CASE STEP OF

 0:
 socket := SysSockCreate(SOCKET_AF_INET, SOCKET_DGRAM, SOCKET_IPPROTO_UDP);

 m_SAddress.sin_family := SOCKET_AF_INET;
 m_SAddress.sin_port := SysSockHtons(wOutPort);
 m_SAddress.sin_addr := 16#FFFFFFFF; (* broadcast *)

 1: MQ_SEND_REAL(socket, m_SAddress, 'PLK0_WarmWaterConsumption', GLOBAL_WarmWaterConsumption);
 2: MQ_SEND_REAL(socket, m_SAddress, 'PLK0_ColdWaterConsumption', GLOBAL_ColdWaterConsumption);

 3: MQ_SEND_REAL(socket, m_SAddress, 'PLK0_activePa', GLOBAL_activePa_avg * 10);
 4: MQ_SEND_REAL(socket, m_SAddress, 'PLK0_Va', Va);

ELSE
 IF socket <> SOCKET_INVALID THEN
 SysSockClose(socket);
 END_IF
 socket := SOCKET_INVALID;
END_CASE

STEP := STEP + 1;

IF socket = SOCKET_INVALID THEN
 STEP := 0;
END_IF

END_PROGRAM

Integration and tools

Connectors

Project includes two simple connectors. One joins MQTT/UDP with classical MQTT, other connects to OpenHAB.

All the tools read mqtt-udp.ini file, see Module mqttudp.config for detailed description. You have, at
least, to set host name for both tools.

Classic MQTT

It is obvious that MQTT/UDP can be used together with traditional MQTT, so there’s a simple gateway to
pass traffic back and forth. It is written in Python and copies everything from one side to another and
back. There’s interlock logic introduced that prevents loops by not passing same topic message in reverse
direction for some 5 seconds.

To run connector go to lang/python3/examples directory and start mqtt_bidir_gate.py program.

There are also unidirectional gates mqtt_broker_to_udp.py and mqtt_udp_to_broker.py.

There is an example of service configuration file mqttudpgate.service for Unix systemctl service control tools.

OpenHAB

At the moment there are two one way gateways, from MQTT/UDP to OpenHAB and back, and one complete bidirectional gateway.

To run connector go to lang/python3/examples directory and start mqtt_udp_to_openhab.py,
openhab_to_udp.py, or openhab_bidir_gate.py program.

Minimal configuration required is to set OpenHAB host name in section [openhab-gate] of mqtt-udp.ini file.
Gateway uses OpenHAB sitemap to get list of items to read. By default it uses sitemap named default. If your
OpenHAB setup most populated sitemap is not default one, please set sitemap name in .ini file too.

Scripts

There are Python scripts I made to help myself testing MQTT/UDP library. Some of them are written in C and Lua too
but most exist just in Python version.

	random_to_udp.py - send random numbers with 2 sec interval, to test reception.

	dump.py - just show all traffic.

	ping.py - send ping and show responces. By using set_muted(mode: bool) function it turns off protocol replies so it will not resond to itself.

	subscribe.py - send subscribe request.

	seq_storm_send.py - send sequential data with no speed limit (use -s to set limit, though).

	seq_storm_check.py - check traffic sent by seq_storm_send.py and calculate speed and error rate.

Traffic viewer

A GUI tool to view what’s going on and send data too.

[image: _images/TrafficViewerScreen_Jan2019.png]
Screenshot of MQTT/UDP viewer tool (Windows)

It is supposed that this tool can be used as remote configuration for MQTT/UDP nodes on the network.

To run program go to project root directory and start mqtt_udp_view.cmd or mqtt_udp_view depending on your OS. You will
need Java 8 and JavaFX installed for it to run. Please download it from http://java.com or
try to use OpenJDK. (I did not yet.)

Actual user guide is at project Wiki: https://github.com/dzavalishin/mqtt_udp/wiki/MQTT-UDP-Viewer-Help

[image: _images/MqttUdpViewer_MacOS.png]
Screenshot of MQTT/UDP viewer tool (Mac OS)

Being written in Java viewer works on Mac OS. It also must run on other
operating systems with Java, but I did not tried it yet.

To run viewer you will need MqttUdpViewer.jar - on any OS java -jar MqttUdpViewer.jar will start
program. For Windows there is MqttUdpViewer.exe which is a starter for MqttUdpViewer.jar,
so in widows you can start it with MqttUdpViewer command.

System Tray Informer

There is a simple program that adds an icon to a system tray. This icon lets you see some data from MQTT/UDP or control one
OpenHAB item. Being a Java program it should run on MacOS and Linux, but it was not tested with Linux yet.
Illustrations show how it looks in Windows and Mac OS.

[image: _images/TrayInfo.png]
Windows: tray icon informer

This informer is shown when you press right mouse button.
It shows two items defined in .ini file, see reference.
In this example mains voltage and total power consumption
are shown.

[image: _images/TrayMenu.png]
Windows: tray icon menu

Menu is shown when right mouse button is pressed.

Setting up

This program reads an mqttudptray.ini configuration file on start:

topic1=PLK0_activePa
topic2=PLK0_Va

topic1header=Power consumption
topic2header=Mains Voltage

experimental
#
controltopic=GroupGuestMain

You can define which two topics will be displayed, and what human readable names they have.
The controltopic setting is for controlling light (or other ON/OFF switch) via
OpenHAB. If defined, Light on and Light off menu items of a tray icon will send ON and OFF
values to corresponding topic.

Current version of MQTT/UDP does not support QoS, and, possiblly on/off message can be lost.
That is why this function is marked as experimental.

Running

In any OS you will need MqttUdpTray.jar and mqttudptray.ini. There is MqttUdpTray.exe
for windows. In other systems (with Java 8 installed) please execute javaw -jar MqttUdpTray.jar
or java -jar MqttUdpTray.jar command. All the files are in the build directory.

[image: _images/MacOSMenu.png]
Tray icon menu

Menu is shown when left mouse button is pressed.

[image: _images/MacOSMouseOver.png]
Tray icon on mouse over

Tooltip is shown when mouse is over the icon.

Addendums

Cook Book

Even if you think that MQTT/UDP is not for you and can’t be used as primary transport in your project, there are
other possibilities to use it together with traditional IoT infrastructure

Displays

Send a copy of all the items state to MQTT/UDP and use it to bring data to hardware and software displays. For example, this
project includes an example program (see tools/tray) to display some MQTT/UDP items via an icon in a desktop
tray. Being a Java program it should work in Windows, MacOS and Unix.

Sensors and integrations

It is not really easy to write a native Java connector for OpenHAB. Write it in Python for MQTT/UDP and
translate data from MQTT/UDP to OpenHAB. It is really easy.

By the way, there is quite a lot of sensors drivers in Python for Raspberry and clones.

Don’t like Raspberry? Use Arduino or some ARM CPU unit and C version of MQTT/UDP.

Network

Current implementation of MQTT/UDP has no security support. It is supposed that later some
kind of packet digital signature will be added. At the moment I suppose that protocol can
be used in comletely secure networks or for not really important data.

[image: _images/IdealHomeNet.svg]Ideal structure of network.

Segment for a smart home is separated from local network for usual computers. MQTT/UDP
data can be forwarded there on firewall, but not backwards.

Actually I personally use MQTT/UDP in typical home network, separated from Internet with NAT but with
no separation between smart home and other computers. I do think that would my home network be hacked
into, intervention into the smart home system is the lesser of possible evils.

FAQ

Q: There’s MQTT-SN, aren’t you repeating it?

	A:

	MQTT-SN still needs broker. And MQTT/UDP still simpler. :)

Q: Why such a set of languages?

	A:

	C is for embedded use. I want it to be easy to build smert sensor or wall display/control unit
based on MQTT/UDP.

Python is for gateways and scripting. Writing small command line program or daemon in Python is easy.
Also, there is a lot of Python drivers for various sensors and displays on Raspberry/Orange/Banana/whatever PI.

Java is for serious programming and GUI apps. Viewer was easy thing to do with JavaFX.

Lua is for NodeMCU and, possibly, other embedded platforms.

CodeSys is evil you can’t escape.

Links

GitHUb: https://github.com/dzavalishin/mqtt_udp

Error reports and feature requests: https://github.com/dzavalishin/mqtt_udp/issues

If you use MQTT/UDP, please let me know by adding issue at GitHub. :)

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/TrafficViewerScreen_Jan2019.png
2

File Display Send

02:3422:

023421

02:3427:
02:3426:
02:3425:

23427,
023426
023426,
023426
023425,
023425,
023425,
02342
023428
023423

PLKO Presence=10
PLKOVa=223.6283
PLKO_activePa=1107463
PLKO_ColdWaterConsumption=4250
PLKO WarmWaterConsumption=7100

LS
e|(te| e e (e

PLKO_sctivePa=11074{
PingResp

PingReq

PLKO_ColdWaterConsyf

PingResp

PingReq

PLKO WarmWaterCondumpron=rruy-
PingResp

PingReq

PingResp

192.1681.143
192.168.56.1

Topic
PLKD WarmWaterConsumption
PLKO ColdWaterConsumption
PLKO sctivePa

PLKO.Va

PLKO Presence

Value.
7100

4250

1107.463

2236283

10

=, Search for topic

Topic to find

Cancel

Host
192.1681.143

192.168.1.143

192.168.1.143

192.168.1.143

192.168.1.143

-

Time
023425
023426
23427
023421

023422

_images/TrayInfo.png
Smart House

Power consumption 1361.238
Mains Voltage 221.3104
Java(TM) Platform SE binary.

213

£ AN NG 0 B

_images/MacOSMouseOver.png
Power consumption 1763.009.
Mains Voltage 223.9379

_images/MqttUdpViewer_MacOS.png
*H O 2 L@« 100%mm MH 21:16 Dmitriy Zavalishin Q

File Display Send W (P | Hep

21:13:51.835: GroupGuestMain=0FF

21:16:48.394: PLKO_Presence=1.0 [XON) [l Topic editor
21:16:47.472: PLKO_Va=218.8241 — — 4
21:16:46.244: PLKO_activePa=1955.799 i . e
- 21:16:45.322: PLKO_ColdWaterConsumption=8060.0 Topic Value Host Time v
.| 21:16:51.466: PLKO_WarmWaterConsumption=15000.0 « [4, | @ PLKO_WarmWaterConsumption 15000.0 192.168.1.143 21:16:51.466 |8
e ;
3
v)' @ PLKO_ColdWaterConsumption 8060.0 192.168.1.143 21:16:45.322
v)' @ PLKO_activePa 1955.799 192.168.1.143 21:16:46.244 4
i v ~ @ PLKO_Va 218.8241 192.168.1.143 21:16:47.472
21:16:51.466: PLKO_WarmWaterConsumption=15000.0 v
21:16:51.206: PingResp v)' & PLKO_Presence 1.0 192.168.1.143 21:16:48.394
2116:51.206: PingResp « | 4, | @ GroupGuestMain OFF 192.168.88.... 21:13:51.835

21:16:51.206: PingReq
21:16:50.203: PingResp
21:16:50.203: PingResp
21:16:50.202: PingReq
21:16:49.199: PingResp
21:16:49.199: PingResp
21:16:49.199: PingReq

21:16:51.466: 192.168.1.143
21:16:51.206: 192.168.88.108

PEINETIREROO T =T@RQY — CSOH=P mm .

_images/TrayMenu.png
2
D) & NG 0 B

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to MQTT/UDP

_static/up.png

_images/MacOSMenu.png
OkHO

*H O
Light ON
Light OFF

Exit

3 W= LI«

Cnpaeka

_static/up-pressed.png

